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Abstract A new linear algebraic public key encryption scheme is introduced for post-quantum cryptography. The
mathematical problem behind the encryption algorithm is based on matrix factorization and the solution of a linear system
of matrix equations including singular matrices as coefficients.
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1. Introduction

Nowadays the most common public key encryption algorithms, like the RSA (Rivest–Shamir–Adleman) algorithm, or
the EEC (elliptic-curve cryptography) algorithm, belong to those cryptographic schemes which can be broken using a
sufficiently powerful future quantum computer within reasonable time. The security of these algorithms relies on hard
mathematical problems, like the integer factorization problem, the discrete logarithm problem or the elliptic-curve discrete
logarithm problem, which can be solved on a powerful quantum computer running Shor’s algorithm within polynomial
time duration. Therefore new algorithms are needed that are substantially secure against the quantum computers. The
candidate quantum-resistant encryption algorithms should be based on a mathematical problem, the solution of which
has a computational complexity of at least NP-complete. Such a mathematical problem is, among others, the exact
nonnegative matrix factorization (NMF), the computational complexity of which is proved to be NP-hard [1]. Various
attempts have been previously made to use NMF in public key cryptography, however, most of them applied approximate
NMF for decryption [2]. Furthermore, a quantum algorithm has been recently published by Du at al. [3] for solving
separable NMF (SNMF) under a logarithmic runtime. However, no sub-exponential algorithm is currently known for
general exact NMF.

2.1. Concept of the algorithm

In the proposed encryption algorithm, the plaintext message is represented by a square matrix and the ciphertext message
is represented by multiple square matrices. The matrix entries are defined over a finite field Fq, where
q = 2m. The ciphertext message is produced using multiple linearly independent linear algebraic equations, in which the
variables include the encoded plaintext message and random error components, which are also nxn square matrices. Due
to the random error components, the encryption algorithm is probabilistic.

In the linear equations, the random error components are multiplied, at least on their one side, with a respective singular
matrix, where the singular matrices themselves are defined as the product of an nxr matrix and an rxn matrix, where r<n.
The equation system formed of these linearly independent matrix equations can be solved only through multiplicative
decomposition of the singular coefficient matrices into the specific matrix factors. The matrix coefficients of the equation
system together form the public key, whereas a specific set of matrices defined using the multiplicative matrix factors of
the public key matrices will form the private key.

2.2. Encryption

The ciphered message is computed using the following linear algebraic equations:

K1E1K2 + K3E2 = Y1 (Eq. 1)

K4E1K5 + K6E2 = Y2 (Eq. 2)

K7E1K8 + K9E2 +M = Y3 (Eq. 3)

where M is an nxn matrix representing the plaintext message, E1 and E2 are arbitrary nxn random error matrices, Ki are
nxn singular matrices, and Y1, Y2 and Y3 are nxn code matrices which together form the ciphered message. The public
key matrices Ki are defined as follows:

K1=FT; K2=QA; K3=CR; K4=HT; K5=K2=QA; K6=DR; K7=JT; K8=QB; K9=GR,

where A, B, R and T are arbitrary full-ranked rxn matrices, C, D, F, G, H, J and Q are arbitrary full-ranked nxr matrices,
where r<n, A� B, and C, D and G are mutually different matrices. Each of the matrices A, B, C, D, F, G, H, J, Q, R and
T, which define the public key matrices Ki, should be kept in secret. Additionally, the random error matrices E1, E2 are
also to be kept in secret by the ciphering party.
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From the above definitions of the public key matrices Ki, it is clear that since each of Ki is a singular matrix, the linear
equation system cannot be solved using the matrices Ki themselves for determining either the plaintext message matrix
M or the random error matrices E1, E2.

2.3. Decryption

To determine the plaintext message matrix M from the above equation system, the following steps are to be taken:

a) Let us express the matrix product RE2 from Eq. 1 as a function of the code matrix Y1 and the matrix product TE1Q,
i.e. RE2 = f1(Y1, TE1Q), where C-1 is the Moore-Penrose pseudoinverse of C:

RE2 = C-1(Y1 – FTE1QA)

b) Let us express the matrix product TE1Q from Eq. 2 as a function of code matrices Y1 and Y2, i.e. TE1Q = f2(Y1, Y2),
where A-1 is the Moore-Penrose pseudoinverse of A:

TE1Q = (H – DC-1F)-1Y2A-1 – (H – DC-1F)-1DC-1Y1A-1

c) By using the expression of step b) for the matrix product TE1Q and combining Eq. 1 with Eq. 3, we can express matrix
M as a function of the three code matrices Y1, Y2 and Y3, i.e. M = f3(Y1, Y2, Y3), where P = (H – DC-1F), P is an nxr
matrix and is assumed to be full-ranked, P-1 is the Moore-Penrose pseudoinverse of P, and I is an nxn identity matrix:

M = JP-1DC-1Y1A-1B – GC-1(I + FP-1DC-1)Y1 – JP-1Y2A-1B + GC-1FP-1Y2 + Y3

If P turns out to be rank-deficient, any one or more of C, D, F and H should be changed so that P be full-ranked.

By introducing the following definitions:

S1 = JP-1DC-1; S2 = A-1B; S3 = GC-1(I + FP-1DC-1); S4 = JP-1; S5 = A-1B; S6 = GC-1FP-1

the plaintext message matrix M can be expressed as

M = S1Y1S2 – S3Y1 – S4Y2S5 + S6Y2 + Y3

The above defined matrices Si are nxn square matrices, and they will together form the private key.

2.4. Security considerations

One possible attack against the present encryption scheme is where the attacker attempts to determine the private key
matrices on the basis of the public key matrices. As it can be seen from the definition of the public key matrices Ki,
the matrices A, B, C, D, F, G, H and J should be determined by the attacker to compute the private key matrices Si.
However, factorization of the public key matrices Ki into the product of two specific matrices is a hard mathematical
problem. According to Moitra [4], the best NMF algorithm known runs in time O (2rmn)O(r2) . The security of the present
algorithm against chosen plaintext attacks (CPA) and chosen ciphertext attacks (CCA) has not been deeply analysed
yet, but preliminary researches show that with appropriate parameter settings, the algorithm will likely be IND-CPA and
IND-CCA2 secure.

3. Conclusion

The proposed encryption scheme is very robust and easy to implement, and it involves a high degree of randomness and
great freedom for the selection of the public key matrix factors. Once its security has been justified by the crypto society,
it may become a candidate algorithm for post-quantum cryptography.
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